Jumat, 04 Juni 2010

FISIKA SEMESTER 2

mesin pemanas carnot dan mesin pendingin carnot
mesin pemanas carnot

HK II : Pada suatu mesin siklik tidak mungkin kalor yang diterima mesin diubah semuanya menjadi kerja. Selalu ada kalor yang dibuang oleh mesin.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiID6JiBV1P3giGDRjwwDwQPRPY-puckUKE1YLfnfCLh_eGZLDOuFmAGVQudgnyuGEfA0aAqqpr2ZHAmsI1g3Z9dIKEUjzzj64Kj6OtpRF1kOnwA5LZOJUACt3gpIuZxYtomeWJFFQPt5qh/s1600/pendingin+carnot.jpg
mesin pendingin carnot
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiID6JiBV1P3giGDRjwwDwQPRPY-puckUKE1YLfnfCLh_eGZLDOuFmAGVQudgnyuGEfA0aAqqpr2ZHAmsI1g3Z9dIKEUjzzj64Kj6OtpRF1kOnwA5LZOJUACt3gpIuZxYtomeWJFFQPt5qh/s1600/pendingin+carnot.jpg
Merupakan kebalikan dari mesin pemanas


hukum boyle
Robert Boyle menyatakan tentang sifat gas bahwa massa gas (jumlah mol)dan temperatur suatu gas dijaga konstan, sementara volume gas diubah ternyata tekanan yang dikeluarkan gas juga berubah sedemikian hingga perkalian antara tekanan (P) dan volume (V) , selalu mendekati konstan. Dengan demikian suatu kondisi bahwa gas tersebut adalah gas sempurna (ideal).

Kemudian hukum ini dikenal dengan Hukum Boyle dengan
persamaan :
RUMUS:
P1V1 = selalu konstan
Atau , jika P1 dan V1 adalah tekanan awal dan volume awal,sedangkan P2 dan V2 adalah tekanan dan volume akhir, maka :
RUMUS:

P1.V1 = P2.V2= konstan.

Syarat berlakunya hukum Boyle adalah bila gas berada dalam keadaan ideal (gas sempurna), yaitu gas yang terdiri dari satu atau lebih atom-atom dan dianggap identik satu sama lain. Setiap molekul tersebut tersebut bergerak swcara acak, bebas dan merata serta memenuhi persamaan gerak Newton. Yang dimaksud gas sempurna (ideal) dapat didefinisikan bahwa gas
yang perbangdingannya PV/nT nya dapat idefinisikan sama dengan R pada setiap besar tekanan. Dengan kata lain, gas sempurna pada tiap besar tekanan bertabiat sama seperti gas sejati pada tekanan rendah.
Persaman gas sempurna :
P.V = n.R.T
Keterangan :

P : tekanan gas
V : volume gas
n : jumlah mol gas
T : temperatur mutlak ( Kelvin)
R : konstanta gas universal
(0,082liter.atm.mol-1.K-1)
Diposkan oleh mariska di 01:24 0 komentar
momentum dan impuls

1. MOMENTUM LINIER (p)

MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.

p = m v

Momentum merupakan besaran vektor, dengan arah p = arah v

2. MOMENTUM ANGULER (L)

MOMENTUM ANGULER adalah hasil kali (cross product) momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.

L = m v R = m w R2
L = p R

Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.

Jika pada benda bekerja gaya F tetap selama waktu t, maka IMPULS I dari gaya itu adalah:

t1
I = ò F dt = F (t2 - t1)
t2

I = Perubahan momentum
Ft = m v akhir - m v awal



Impuls merupakan besaran vektor. Pengertian impuls biasanya dipakai dalam peristiwa besar dimana F >> dan t <<. Jika gaya F tidak tetap (F fungsi dari waktu) maka rumus I = F . t tidak berlaku.

Impuls dapat dihitung juga dengan cara menghitung luas kurva dari grafik gaya F vs waktu t.
Diposkan oleh mariska di 01:23 0 komentar
termodinamika


Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.

Usaha Luar

Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.

W = p∆V= p(V2 – V1)

Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

pers01Tekanan dan volume dapat diplot dalam grafik p – V. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik p – V, usaha yang dilakukan gas merupakan luas daerah di bawah grafik p – V. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.

fig2004Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.

Energi Dalam

Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.

Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai

untuk gas monoatomik

pers02

untuk gas diatomik

pers03

Dimana ∆U adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, dan ∆T adalah perubahan suhu gas (dalam kelvin).

Hukum I Termodinamika

Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.

Gambar

Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai

Q = W + ∆U

Dimana Q adalah kalor, W adalah usaha, dan ∆U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.
Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam ∆U.


Proses Isotermik

Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (∆U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).

Proses isotermik dapat digambarkan dalam grafik p – V di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai

pers04Dimana V2 dan V1 adalah volume akhir dan awal gas.

isothermal_process

Proses Isokhorik

Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (∆V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.

QV = ∆U

diag11

Proses Isobarik

Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = p∆V). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku

pers05Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan

QV =∆U

Dari sini usaha gas dapat dinyatakan sebagai

W = Qp − QV

Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).


Proses Adiabatik

Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = ∆U).

Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai dan

pers06Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).

341px-adiabaticsvg

Proses adiabatik dapat digambarkan dalam grafik p – V dengan bentuk kurva yang mirip dengan grafik p – V pada proses isotermik namun dengan kelengkungan yang lebih curam.
Diposkan oleh mariska di 00:39 0 komentar
Hukum Archimedes
Hukum Archimedes menyatakan sebagai berikut, Sebuah benda yang tercelup sebagian atau seluruhnya ke dalam zat cair akan mengalami gaya ke atas yang besarnya sama dengan berat zat cair yang dipindahkannya.

Sebuah benda yang tenggelam seluruhnya atau sebagian dalam suatu fluida akan mendapatkan gaya angkat ke atas yang sama besar dengan berat fluida fluida yang dipindahkan. Besarnya gaya ke atas menurut Hukum Archimedes ditulis dalam persamaan :

Fa = ρ v g
Keterangan :
Fa = gaya ke atas (N)
V = volume benda yang tercelup (m3)
ρ = massa jenis zat cair (kg/m3)
g = percepatan gravitasi (N/kg)

Hukum ini juga bukan suatu hukum fundamental karena dapat diturunkan dari hukum newton juga.
- Bila gaya archimedes sama dengan gaya berat W maka resultan gaya =0 dan benda
melayang .
- Bila FA>W maka benda akan terdorong keatas akan melayang
- Bila FA

Jika rapat massa fluida lebih kecil daripada rapat massa balok maka agar balok berada dalam keadaan seimbang,volume zat cair yang dipindahkan harus lebih kecil dari pada volume balok.Artinya tidak seluruhnya berada terendam dalam cairan dengan perkataan lain benda mengapung. Agar benda melayang maka volume zat cair yang dipindahkan harus sama dengan volume balok dan rapat massa cairan sama dengan rapat rapat massa benda.
Jika rapat massa benda lebih besar daripada rapat massa fluida, maka benda akan mengalami gaya total ke bawah yang tidak sama dengan nol. Artinya benda akan jatuh tenggelam.
Berdasarkan Hukum Archimedes, sebuah benda yang tercelup ke dalam zat cair akan mengalami dua gaya, yaitu gaya gravitasi atau gaya berat (W) dan gaya ke atas (Fa) dari zat cair itu. Dalam hal ini ada tiga peristiwa yang berkaitan dengan besarnya kedua gaya tersebut yaitu seperti berikut.

• Tenggelam
Sebuah benda yang dicelupkan ke dalam zat cair akan tenggelam jika berat benda (w)
lebih besar dari gaya ke atas (Fa).

w > Fa
ρb X Vb X g > ρa X Va X g
ρb > ρa

Volume bagian benda yang tenggelam bergantung dari rapat massa zat cair (ρ)

• Melayang

Sebuah benda yang dicelupkan ke dalam zat cair akan melayang jika berat benda (w)
sama dengan gaya ke atas (Fa) atu benda tersebut tersebut dalam keadaan setimbang

w = Fa
ρb X Vb X g = ρa X Va X g
ρb = ρa

Pada 2 benda atau lebih yang melayang dalam zat cair akan berlaku :

(FA)tot = Wtot
rc . g (V1+V2+V3+V4+…..) = W1 + W2 + W3 + W4 +…..

• Terapung

Sebuah benda yang dicelupkan ke dalam zat cair akan terapung jika berat benda (w)
lebih kecil dari gaya ke atas (Fa).

w = Fa
ρb X Vb X g = ρa X Va X g
ρb < ρa

Misal : Sepotong gabus ditahan pada dasar bejana berisi zat cair, setelah dilepas, gabus
tersebut akan naik ke permukaan zat cair (terapung) karena :

FA > W
rc . Vb . g > rb . Vb . g
rc $rb

Selisih antara W dan FA disebut gaya naik (Fn).

Fn = FA - W

Benda terapung tentunya dalam keadaan setimbang, sehingga berlaku :

FA’ = W
rc . Vb2 . g = rb . Vb . g

FA’ = Gaya ke atas yang dialami oleh bagian benda yang tercelup di dalam zat cair.
Vb1 = Volume benda yang berada dipermukaan zat cair.
Vb2 = Volume benda yang tercelup di dalam zat cair.
Vb = Vb1 + Vb 2
FA’ = rc . Vb2 . g

Berat (massa) benda terapung = berat (massa) zat cair yang dipindahkan

Daya apung (bouyancy) ada 3 macam, yaitu :
1. Daya apung positif (positive bouyancy) : bila suatu benda mengapung.
2. Daya apung negatif (negative bouyancy) : bila suatu benda tenggelam.
3. Daya apung netral (neutral bouyancy) : bila benda dapat melayang.

Bouyancy adalah suatu faktor yang sangat penting di dalam penyelaman. Selama
bergerak dalam air dengan scuba, penyelam harus mempertahankan posisi neutral
bouyancy.
Sumber : http://dr-budiow.com/

Konsep Melayang, Tenggelam dan Terapung.

Kapankah suatu benda dapat terapung, tenggelam dan melayang ?
a. Benda dapat terapung bila massa jenis benda lebih besar dari massa jenis zat cair.
(miskonsepsi).
b. Benda dapat terapung bila massa jenis benda lebih kecil dari massa jenis zat cair.
(konsepsi ilmiah)
c. Benda dapat melayang bila massa jenis benda sama dengan massa jenis zat cair.
(konsepsi ilmiah)
d. Benda dapat tenggelam bila massa jenis benda lebih besar dari massa jenis zat cair.
(konsepsi ilmiah).
e. Terapung, melayang dan tenggelam dipengaruhi oleh volume benda. (miskonsepsi).
f. Terapung, melayang dan tenggelam dipengaruhi oleh berat dan massa benda
(miskonsepsi).
Diposkan oleh mariska di 00:34 0 komentar
Hukum Bernoulli
Dalam bentuknya yang sudah disederhanakan, secara umum terdapat dua bentuk persamaan Bernoulli; yang pertama berlaku untuk aliran tak-termampatkan (incompressible flow), dan yang lain adalah untuk fluida termampatkan (compressible flow).
Aliran Tak-termampatkan

Aliran tak-termampatkan adalah aliran fluida yang dicirikan dengan tidak berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida tak-termampatkan adalah: air, berbagai jenis minyak, emulsi, dll. Bentuk Persamaan Bernoulli untuk aliran tak-termampatkan adalah sebagai berikut:

di mana:

v = kecepatan fluida
g = percepatan gravitasi bumi
h = ketinggian relatif terhadapa suatu referensi
p = tekanan fluida
ρ = densitas fluida

Persamaan di atas berlaku untuk aliran tak-termampatkan dengan asumsi-asumsi sebagai berikut:

* Aliran bersifat tunak (steady state)
* Tidak terdapat gesekan

Dalam bentuk lain, Persamaan Bernoulli dapat dituliskan sebagai berikut:


Diposkan oleh mariska di 00:29 0 komentar
fluida


A. Fluida Statik

Fluida merupakan istilah untuk zat alir. Zat alir dibatasi pada zat mengalirkan seluruh bagian-bagiannya ke tempat lain dalam waktu yang bersamaan. Zat alir mencakup zat yang dalam wujud cair dan gas. Fluida statik meninjau fluida yang tidak bergerak. Misalnya air di gelas, air di kolam renang, air dalam kolam, air danau, dan sebagainya.
Penggolongan fluida menurut sifat-sifatnya dibedakan menjadi dua,

yaitu :
1. Fluida ideal
2. Fluida sejati
1) Fluida ideal

Ciri-ciri Fluida ideal adalah:
a. Fluida yang tidak kompresibel (volumenya tidak berubah karena perubahan tekanan)
b. Berpindah tanpa mengalami gesekan
2) Fluida sejati
Ciri-ciri Fluida sejati adalah:
a. Kompresibel
b. Berpindah dengan mengalami gesekan

Sedangkan gaya-gaya yang bekerja pada fluida ada tiga macam yaitu:
- Kohesi, yaitu : gaya tarik-menarik antara partikel-partikel yang sejenis
- Adhesi, yaitu : gaya tarik-menarik antara partikel-partikel yang tidak sejenis
- tegangan permukaan , yaitu gaya pada permukaan fluida, anggaplah bahwa setetes air
seolah-olah ada pembungkus

1. Kohesi dan Adhesi

Setetes air yang jatuh di kaca meja akan berbeda bentuknya bila dijatuhkan di sehelai daun talas. Mengapa demikian ? Antara molekul-molekul air terjadi gaya tarik-menarik yang disebut dengan gaya kohesi molekul air. Gaya kohesi diartikan sebagai gaya tarik-menarik antara partikel- partikel zat yang sejenis. Pada saat air bersentuhan dengan benda lain maka molekul-molekul bagian luarnya tarik-menarik dengan molekul-molekul luar benda lain tersebut. Gaya tarik-menarik antara partikel zat yang tidak sejenis disebut gaya adhesi. Gaya adhesi antara molekul air dengan molekul kaca berbeda dibandingkan gaya adhesi antara molekul air dengan molekul daun talas. Demikian pula gaya kohesi antar molekul air lebih kecil daripada gaya adhesi antara molekul air dengan molekul kaca. Itulah sebabnya air membasahi kaca berbentuk melebar. Namun air tidak membasahi daun talas melainkan tetes air berbentuk bulat-bulat menggelinding di permukaan karena gaya kohesi antar molekul air lebih besar daripada gaya adhesi antara molekul air dan molekul daun talas.

Gaya kohesi maupun gaya adhesi mempengaruhi bentuk permukaan zat cair dalam wadahnya. Misalkan ke dalam dua buah tabung reaksi masing-masing diisikan air dan air raksa. Apa yang terjadi ? Permukaan air dalam tabung reaksi berbentuk cekung disebut meniskus cekung sedangkan permukaan air raksa dalam tabung reaksi berbentuk cembung disebut meniskus cembung. Hal itu dapat dijelaskan bahwa gaya adhesi molekul air dengan molekul kaca lebih besar daripada gaya kohesi antar molekul air, sedangkan gaya adhesi molekul air raksa dengan molekul kaca lebih kecil daripada gaya kohesi antara molekul air raksa.



Meniskus cembung maupun meniskus cekung menyebabkan sudut kontak antara bidang wadah (tabung) dengan permukaan zat cair berbeda besarnya. Meniskus cembung menimbulkan sudut kontak tumpul (> 90°), sedangkan meniskus cekung menimbulkan sudut kontak lancip (< 90°). Gaya kohesi dan gaya adhesi juga berpengaruh pada gejala kapilaritas. Sebuah pipa kapiler kaca bila dicelupkan pada tabung berisi air akan dijumpai air dapat naik ke dalam pembuluh kaca pipa kapiler, sebaliknya bila pembuluh pipa kapiler dicelupkan pada tabung berisi air raksa akan dijumpai bahwa air raksa di dalam pembuluh kaca pipa kapiler lebih rendah permukaannya dibandingkan permukaan air raksa dalam tabung.



Jadi kapilaritas sangat tergantung pada kohesi dan adhesi. Air naik dalam pembuluh pipa kapiler dikarenakan adhesi sedangkan air raksa turun dalam pembuluh pipa kapiler dikarenakan kohesi. Perhatikan gambar berikut ini. Pada air: Permukaannya cekung, pada pipa kapiler permukaannya lebih tinggi, karena adhesinya lebih kuat dari kohesinya sendiri. Pada raksa: Permukaannya cembung, sedangkan pada pipa kapiler permukaannya lebih rendah, karena kohesi air raksa lebih besar dari adhesi antara air raksa dengan kaca. 2. Tegangan Permukaan Dalam zat cair ada partikel-partikel yang dikelilingi semacam bola dimana partikel itu sebagai pusatnya. Dalam bola itu adalah suatu medan. Perhatikan tiga buah partikel fluida A, B, C Partikel A = dalam keadaan setimbang, bekerja gaya-gaya yang sama besar dari semua arah Partikel B = karena F1 > F2 , gaya yang arahnya ke bawah lebih besar daripada gaya yang
arahnya ke atas
Partikel C = hanya ada gaya ke bawah, hal inilah yang dapat menyebabkan tegangan
permukaan
Karena adanya kohesi, partikel-partikel pada permukaan air cenderung ditarik ke dalam. Sehingga

zat cair membentuk permukaan yang sekecil-kecilnya.
Dengan adanya adhesi, kohesi dan tegangan permukaan ketiganya dapat menentukan bentuk-bentuk
permukaan zat cair. Bentuk permukaan itu misalnya cembung atau cekung.
Diposkan oleh mariska di 00:12 0 komentar
Jumat, 15 Januari 2010
momen gaya
Pada gerak lurus atau gerak translasi, faktor yang menyebabkan adanya gerak adalah gaya (F). Sedangkan pada gerak rotasi atau gerak melingkar, selain gaya (F), ada faktor lain yang menyebabkan benda itu bergerak rotasi yaitu lengan gaya (l) yang tegak lurus dengan gaya.

Secara matematis, momen gaya dirumuskan

τ = F x l

τ = F . l

Jika antara lengan gaya l dan gaya F tidak tegak lurus maka

τ = F . l sin θ

dimana θ adalah sudut antara lengan gaya l dengan gaya F.

Lengan gaya merupakan jarak antara titik tumpuan atau poros ke titik dimana gaya itu bekerja. Jika gaya dikenakan berada di ujung lengan maka bisa kita katakan lengan gaya ( l ) sama dengan jari-jari lingkaran (r).

Sehingga momen gaya dapat juga kita tulis

τ = F . r
Diposkan oleh mariska di 16:57 0 komentar
momen inersia
torsi berpengaruh terhadap gerakan benda yang berotasi. semakin besar torsi, semakin besar pengaruhnya terhadap gerakan benda yang berotasi. dalam hal ini, semakin besar torsi, semakin besar perubahan kecepatan sudut yang dialami benda. Perubahan kecepatan sudut = percepatan sudut. Jadi kita bisa mengatakan bahwa torsi sebanding alias berbanding lurus dengan percepatan sudut benda. Perlu diketahui bahwa benda yang berotasi juga memiliki massa.

Dalam gerak lurus, massa berpengaruh terhadap gerakan benda. Massa bisa diartikan sebagai kemampuan suatu benda untuk mempertahankan kecepatan geraknya. Apabila benda sudah bergerak lurus dengan kecepatan tertentu, benda sulit dihentikan jika massa benda itu besar. Sebuah truk gandeng yang sedang bergerak lebih sulit dihentikan dibandingkan dengan sebuah taxi. Sebaliknya jika benda sedang diam (kecepatan = 0), benda tersebut juga sulit digerakan jika massanya besar. Misalnya jika kita menendang bola tenis meja dan bola sepak dengan gaya yang sama, maka tentu saja bola sepak akan bergerak lebih lambat.

Dalam gerak rotasi, “massa” benda tegar dikenal dengan julukan Momen Inersia alias MI. Momen Inersia dalam Gerak Rotasi tuh mirip dengan massa dalam gerak lurus. Kalau massa dalam gerak lurus menyatakan ukuran kemampuan benda untuk mempertahankan kecepatan linear (kecepatan linear = kecepatan gerak benda pada lintasan lurus), maka Momen Inersia dalam gerak rotasi menyatakan ukuran kemampuan benda untuk mempertahankan kecepatan sudut (kecepatan sudut = kecepatan gerak benda ketika melakukan gerak rotasi. Disebut sudut karena dalam gerak rotasi, benda bergerak mengitari sudut). Makin besar Momen inersia suatu benda, semakin sulit membuat benda itu berputar alias berotasi. sebaliknya, benda yang berputar juga sulit dihentikan jika momen inersianya besar.
Momen Inersia Partikel

Sebelum kita membahas momen inersia benda tegar, terlebih dahulu kita pelajari Momen inersia partikel.Konsep partikel ini yang kita gunakan dalam membahas gerak benda pada Topik Kinematika (Gerak Lurus, Gerak Parabola, Gerak Melingkar) dan Dinamika (Hukum Newton). Jadi benda-benda dianggap seperti partikel.


Konsep partikel itu berbeda dengan konsep benda tegar. Dalam gerak lurus dan gerak parabola, misalnya, kita menganggap benda sebagai partikel, karena ketika bergerak, setiap bagian benda itu memiliki kecepatan (maksudnya kecepatan linear) yang sama. Ketika sebuah mobil bergerak, misalnya, bagian depan dan bagian belakang mobil mempunyai kecepatan yang sama. Jadi kita bisa mengganggap mobil seperti partikel alias titik.


Ketika sebuah benda melakukan gerak rotasi, kecepatan linear setiap bagian benda berbeda-beda. Bagian benda yang ada di dekat sumbu rotasi bergerak lebih pelan (kecepatan linearnya kecil), sedangkan bagian benda yang ada di tepi bergerak lebih cepat (kecepatan linear lebih besar). Jadi , kita tidak bisa menganggap benda sebagai partikel karena kecepatan linear setiap bagian benda berbeda-beda ketika ia berotasi. Btw, kecepatan sudut semua bagian benda itu sama. Mengenai hal ini sudah dijelaskan dalam Kinematika Rotasi.


terlebih dahulu kita tinjau Momen Inersia sebuah partikel yang melakukan gerak rotasi. Hal ini dimaksudkan untuk membantu kita memahami konsep momen inersia. Setelah membahas Momen Inersia Partikel, kita akan berkenalan dengan momen inersia benda tegar.


Misalnya sebuah partikel bermassa m diberikan gaya F sehingga ia melakukan gerak rotasi terhadap sumbu O. Partikel itu berjarak r dari sumbu rotasi. mula-mula partikel itu diam (kecepatan = 0). Setelah diberikan gaya F, partikel itu bergerak dengan kecepatan linear tertentu. Mula-mula partikel diam, lalu bergerak (mengalami perubahan kecepatan linear) setelah diberikan gaya. Dalam hal ini benda mengalami percepatan tangensial. Percepatan tagensial = percepatan linear partikel ketika berotasi.

Kita bisa menyatakan hubungan antara gaya (F), massa (m) dan percepatan tangensial (at), dengan persamaan Hukum II Newton :




Karena partikel itu melakukan gerak rotasi, maka ia pasti mempunyai percepatan sudut. Hubungan antara percepatan tangensial dengan percepatan sudut dinyatakan dengan persamaan :
Sekarang kita masukan a tangensial ke dalam persamaan di atas :
Kita kalikan ruas kiri dan ruas kanan dengan r :

Perhatikan ruas kiri. rF = Torsi, untuk gaya yang arahnya tegak lurus sumbu (bandingan dengan gambar di atas). Persamaan ini bisa ditulis menjadi :
mr2 adalah momen inersia partikel bermassa m, yang berotasi sejauh r dari sumbu rotasi. persamaan ini juga menyatakan hubungan antara torsi, momen inersia dan percepatan sudut partikel yang melakukan gerak rotasi. Istilah kerennya, ini adalah persamaan Hukum II Newton untuk partikel yang berotasi.

Jadi Momen Inersia partikel merupakan hasil kali antara massa partikel itu (m) dengan kuadrat jarak tegak lurus dari sumbu rotasi ke partikel (r2). Untuk mudahnya, bandingkan dengan gambar di atas.

Secara matematis, momen inersia partikel dirumuskan sebagai berikut :
Momen Inersia Benda Tegar

Secara umum, Momen Inersia setiap benda tegar bisa dinyatakan sebagai berikut :
Benda tegar bisa kita anggap tersusun dari banyak partikel yang tersebar di seluruh bagian benda itu. Setiap partikel-partikel itu punya massa dan tentu saja memiliki jarak r dari sumbu rotasi. jadi momen inersia dari setiap benda merupakan jumlah total momen inersia setiap partikel yang menyusun benda itu.

Ini cuma persamaan umum saja. Bagaimanapun untuk menentukan Momen Inersia suatu benda tegar, kita perlu meninjau benda tegar itu ketika ia berotasi. Walaupun bentuk dan ukuran dua benda sama, tetapi jika kedua benda itu berotasi pada sumbu alias poros yang berbeda, maka Momen Inersia-nya juga berbeda.






Diposkan oleh mariska di 16:41 0 komentar
Rabu, 16 Desember 2009
Rangkaian pegas
Rangkaian Pegas
Untuk benda elstis

Perbandingan antara tegangan dan regangan dinamakan sebagai modulus elastisitas atau modulus young (E)

“Perubahan panjang suatu pegas berbanding lurus (linier) dengan gaya tarik atau gaya tekan yang diberikan pada pegas tersebut”

dimana F = Gaya yang diberikan;
Δx = Pertambahan panjang.
Nilai , namun ada faktor pengali. Faktor pengali ini disimbolkan dengan huruf k sehingga
rumusan hukum Hooke
Nilai k untuk tiap bahan berbeda-beda dan merupakan ciri khusus dari tiap bahan. Nilai k ini dinamakan sebagai konstanta pegas.
Apabila suatu pegas ditarik gaya sebesar F maka pegas tersebut akan bertambah besar sepanjang . Namun pada keadaan tertentu dimana gaya yang diberikan melebihi batas kemampuan dari pegas, maka pegas tidak dapat bertambah panjang lagi. Artinya hukum hooke tidak berlaku lagi. Dalam keadaan seperti ini pegas dikatakan sudah rusak.
Apabila gaya yang dikenakan pada pegas dihilangkan, maka pegas akan bergerak secara berosilasi menuju titik keseimbangan ( keadaan awal ).
Besarnya gaya yang diperlukan untuk kembali ke titik keseimbangan ini dinamakan sebagai gaya pemulih. Berdasarkan hukum III Newton, maka besarnya gaya pemulih sama dengan gaya yang diberikan untuk menarik pegas, hanya tandanya berlawanan.
tanda (-) menunjukan bahwa gaya pemulih berlawanan dengan gaya penyebabnya.
Simpangan terjauh dari titik keseimbangannya dinamakan seBagai amplitudo A. Selama geraknya, pegas memenuhi persamaan

Periodenya adalah

sedangkan frekuensinya

Energi potensial yang dimiliki pegas adalah

Rangkaian pegas.
Rangkaian seri
2 pegas atau lebih yang dirangkai secara seri akan memiliki nilai konstanta pegas total sebesar



Rangkaian paralel
2 pegas atau lebih yang dirangkai secara paralel akan memiliki nilai konstanta pegas total sebesar
Diposkan oleh mariska di 20:53 0 komentar
HUKUM KEKEKALAN MOMENTUM
Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2.

Jika dua benda A dan B dengan massa masing-masing MA dan MB serta kecepatannya masing-masing VA dan VB saling bertumbukan, maka :

MA VA + MB VB = MA VA + MB VB

VA dan VB = kecepatan benda A dan B pada saat tumbukan

VA dan VB = kecepatan benda A den B setelah tumbukan.

Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif.

Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,

a. ELASTIS SEMPURNA : e = 1

e = (- VA' - VB')/(VA - VB)

e = koefisien restitusi.
Disini berlaku hukum kokokalan energi den kokekalan momentum.

b. ELASTIS SEBAGIAN: 0 < e < 1
Disini hanya berlaku hukum kekekalan momentum.

Khusus untuk benda yang jatuh ke tanah den memantul ke atas lagi maka koefisien restitusinya adalah:

e = h'/h

h = tinggi benda mula-mula
h' = tinggi pantulan benda

C. TIDAK ELASTIS: e = 0
Setelah tumbukan, benda melakukan gerak yang sama dengan satu kecepatan v',

MA VA + MB VB = (MA + MB) v'

Disini hanya berlaku hukum kekekalan momentum



Contoh:

1. Sebuah bola dengan massa 0.1 kg dijatuhkan dari ketinggian 1.8 meter dan mengenai lantai, kemudian dipantulkan kembali sampai ketinggian 1.2 meter. Jika g = 10 m/det2.
Tentukanlah:
a. impuls karena beret bola ketika jatuh.
b. koefisien restitusi

Jawab:

a. Selama bola jatuh ke tanah terjadi perubahan energi potensial menjadi energi kinetik.

Ep = Ek

m g h = 1/2 mv2 ® v2 = 2 gh

® v = Ö2 g h

impuls karena berat ketika jatuh:

I = F . Dt = m . Dv
= 0.1Ö2gh = 0.1 Ö(2.10.1.8) = 0.1.6 = 0,6 N det.

b. Koefisien restitusi:

e = Ö(h'/h) = Ö(1.2/1.8) = Ö(2/3)

2. Sebuah bola massa 0.2 kg dipukul pada waktu sedang bergerak dengan kecepatan 30 m/det. Setelah meninggalkan pemukul, bola bergerak dengan kecepatan 40 m/det berlawanan arah semula. Hitung impuls pada tumbukan tersebut !

Jawab:

Impuls = F . t = m (v2 - v1)

= 0.2 (-40 - 30)

= -14 N det

Tanda berarti negatif arah datangnya berlawanan dengan arah datangnya bola.

3. Sebuah peluru yang massanya M1 mengenai sebuah ayunan balistik yang massanya M2. Ternyata pusat massa ayunan naik setinggi h, sedangkan peluru tertinggal di dalam ayunan. Jika g = percepatan gravitasi, hitunglah kecepatan peluru pada saat ditembakkan !

Jawab:

Penyelesaian soal ini kita bagi dalam dua tahap, yaitu:

1. Gerak A - B.

Tumbukan peluru dengan ayunan adalah tidak elastis jadi kekekalan momentumnya:

M1VA + M2VB = (M1 + M2) V
M1VA + 0 = (M1 + M2) V

VA = [(M1 + M2)/M1] . v


2. Gerak B - C.
Setelah tumbukan, peluru dengan ayunan naik setinggi h, sehingga dapat diterapkan kekekalan energi:

EMB = EMC

EpB + EkB = EpC + EkC

0 + 1/2 (M1 + M2) v2 = (M1 + M2) gh + 0

Jadi kecepatan peluru: VA = [(M1 + M2)/M1] . Ö(2 gh)

d. ELASTISITAS KHUSUS DALAM ZAT PADAT

Zat adalah suatu materi yang sifat-sifatnya sama di seluruh bagian, dengan kata lain, massa terdistribusi secara merata. Jika suatu bahan (materi) berupa zat padat mendapat beban luar, seperti tarikan, lenturan, puntiran, tekanan, maka bahan tersebut akan mengalami perubahan bentuk tergantung pada jenis bahan dan besarnya pembebanan. Benda yang mampu kembali ke bentuk semula, setelah diberikan pembebanan disebut benda bersifat elastis.

Suatu benda mempunyai batas elastis. Bila batas elastis ini dilampaui maka benda akan mengalami perubahan bentuk tetap, disebut juga benda bersifat plastis.
Diposkan oleh mariska di 20:50 0 komentar
Simpangan Getar

I. GETARAN

1. Pengertian Getaran
Getaran adalah gerak bolak-balik atau gerak periodik disekitar titik tertentu secara periodik.

Gerak Periodik adalah suatu getaran atau gerakan yang dilakukan benda secara bolak-balik melalui jalan tertentu yang kembali lagi ke tiap kedudukan dan kecepatan setelah selang waktu tertentu.

Simpangan adalah jarak antara kedudukan benda yang bergetar pada suatu saat sampai kembali pada kedudukan seimbangnya.

Amplitudo adalah simpangan maksimum yang dilakukan pada peristiwa getaran.

Perioda adalah waktu yang diperlukan untuk melakukan satu kali getaran penuh.

Frekuensi adalah banyaknya getaran penuh yang dapat dilakukan dalam waktu satu detik.

2. Ayunan Sederhana
Ayunan sederhana atau disebut bandul melakukan gerakan bolak balik sepanjang busur AB.
Waktu yang diperlukan oleh benda untuk bergerak dari titik A ke titik A lagi disebut Satu Perioda.
Sedangkan banyaknya getaran atau gerak bolak-balik yang dapat dilakukan dalam waktu satu detik disebut Frekuensi.
Frekuensi yang dihasilkan bandul disebut Frekuensi Alamiah.
Frekuensi Alamiah adalah frekuensi yang ditimbulkan dari ayunan tanpa adanya pengaruh luar.


Gb. Gaya pd Ayunan Sederhana

Untuk Mengetahui besarnya gaya yang mempengaruhi gerak ayunan dapat digunakan persamaan berikut ini :



Dimana :

F : Gaya (N)
m : Massa benda (Kg)
g : Percepatan gravitasi (ms-2)
θ : Sudut simpangan (…o)
l : Panjang tali (m)
x : Simpangan getar (m)

Simpangan getar (A) dapat diketahui besarnya melalui persamaan sebagai berikut :
Dimana :


A : Simpangan getar (Amplitudo) (m)
θ : Sudut deviasi (…o)
l : Panjang tali (m)

Sedangkan perioda getaran pada ayunan sederhana dapat diketahui melalui persamaan sebagai berikut :
Dimana :


T : Perioda getaran (S)
phi : 3,14 ( 22/7)
l : Panjang tali (m)
g : Percepatan gravitasi (ms-2)

Frekuensi getaran dapat dicari dengan menggunakan persamaan sebagai berikut :





Dimana :


f : Frekuensi getaran (Hz)
phi : 3,14 (22/7)
g : Percepatan gravitasi (ms-2)
l : Panjang tali (m)
T : Periode getaran (s)

SOAL

Sebuah bandul memiliki massa 100 gr dengan panjang tali 40 cm. Apabila percepatan gravitasi bumi 10 ms-2 dan bandul tersebut diberi sudut simpangan sebesar 10o. Tentukanlah amplitudo getaran dan gaya pada saat simpangan maksimum serta perioda getarannya!


3. Pegas

Getaran pada pegas memiliki frekuensi alamiah sendiri. Waktu yang diperlukan oleh benda untuk bergerak dari titik A kembali lagi ke titik A lagi disebut satu perioda dimana besarnya tergantung pada massa beban dan konstanta gaya pegas.


Besarnya gaya yang menyebabkan getaran dapat di ketahui melalui persamaan sebagai berikut :

Dimana :



F : Gaya (N)

k : Konstanta gaya pegas (N/m)

x : Simpangan (m)

Konstanta gaya pegas dapat diketahui melalui persamaan sebagai berikut :

Dimana :


k : Konstanta pegas (N/m)
m : Massa benda (Kg)
ω : Kecepatan sudut dari gerak pegas

Sedangkan untuk mengetahui besarnya frekuensi getarannya melalui persamaan sebagai berikut :

Dimana :


f : Frekuensi getaran (Hz)
phi: 3,14 (22/7)
k : Konstanta gaya pegas
m : Massa beban

Dan besarnya perioda getar dapat diketahui melalui persamaan sebagai berikut :
Dimana :

T : Perioda getar
phi : 3,14 (22/7)
m : Massa beban
k : Konstanta gaya pegas

SOAL
Sebuah pegas dengan tetapan gaya pegas sebesar 50 N/m dengan massa beban sebesar 50 gr. Dari keadaan setimbangannya pegas ditarik dengan gaya 2N. Tentukanlah simpangan maksimu, periode getarannya dan frekuensi getarannya


4. Hukum Kekekalan Energi Mekanik Pada Getaran

Besarnya energi mekanik dari suatu benda yang bergerak secara periodik adalah tetap.

Energi mekanik adalah jumlah dari energi kinetik dan energi potensial.

Di dalam setiap getaran energi potensial dan energi kinetik besarnya selalu berubah-ubah tetapi memiliki jumlah yang tetap.

Besarnya energi potensial dari benda yang bergetar secara periodik dapat diketahui melalui persamaan sebagai berikut :

Dimana :


Ep : Energi Potensial
k : Konstanta gaya pegas
y : Simapangan getaran
Diposkan oleh mariska di 20:37 0 komentar
Gerak Harmonik
Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar. Senar gitar yang sering anda main atau dimainkan oleh gitaris group band musik terkenal yang kadang membuat anda menjerit histeris bahkan sampai menangis tersedu-sedu, getaran garpu tala, getaran mobil ketika mesinnya dinyalakan atau ketika mobil mencium mobil lainnya hingga penumpangnya babak belur. Ingat juga ketika anda tertawa terpingkal-pingkal tubuh anda juga bergetar, demikian juga rumah anda yang bergetar dasyat hingga ambruk ketika terjadi gempa bumi. Sangat banyak contoh getaran dalam kehidupan kita, sehingga jika disebutkan satu persatu maka tentu sangat melelahkan. Silahkan dipikirkan sendiri contoh lainnya.

Getaran dan gelombang merupakan dua hal yang saling berkaitan. Gelombang, baik itu gelombang air laut, gelombang gempa bumi, gelombang suara yang merambat di udara; semuanya bersumber pada getaran. Dengan kata lain, getaran adalah penyebab adanya gelombang. Mengenai gelombang, selengkapnya akan kita pelajari pada pokok bahasan tersendiri. Sekarang terlebih dahulu kita pelajari pokok bahasan getaran. Semoga setelah mempelajari getaran, dirimu tidak ikut bergetar, apalagi ketika gurumu menyajikan soal-soal hitungan yang membuat dirimu mabuk kepayang.

GERAK HARMONIK

Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerak periodik. Karena gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini, sehingga pada kesempatan ini kita akan membahasnya secara mendetail.

Dalam kehidupan sehari-hari, gerak bolak balik benda yang bergetar terjadi tidak tepat sama karena pengaruh gaya gesekan. Ketika kita memainkan gitar, senar gitar tersebut akan berhenti bergetar apabila kita menghentikan petikan. Demikian juga bandul yang berhenti berayun jika tidak digerakan secara berulang. Hal ini disebabkan karena adanya gaya gesekan. Gaya gesekan menyebabkan benda-benda tersebut berhenti berosilasi. Jenis getaran seperti ini disebut getaran harmonik teredam. Walaupun kita tidak dapat menghindari gesekan, kita dapat meniadakan efek redaman dengan menambahkan energi ke dalam sistem yang berosilasi untuk mengisi kembali energi yang hilang akibat gesekan, salah satu contohnya adalah pegas dalam arloji yang sering kita pakai. Pada kesempatan ini kita hanya membahas gerak harmonik sederhana secara mendetail, karena dalam kehidupan sehari-hari terdapat banyak jenis gerak yang menyerupai sistem ini.

GERAK HARMONIS SEDERHANA

Gerak harmonis sederhana yang dapat dijumpai dalam kehidupan sehari-hari adalah getaran benda pada pegas dan getaran benda pada ayunan sederhana. Kita akan mempelajarinya satu persatu.

Gerak Harmonis Sederhana pada Ayunan

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya maka benda akan diam di titik kesetimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana.

Besaran fisika pada Gerak Harmonik Sederhana pada ayunan sederhana

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode alias waktu yang dibutuhkan benda untuk melakukan satu getaran secara lengkap. Benda melakukan getaran secara lengkap apabila benda mulai bergerak dari titik di mana benda tersebut dilepaskan dan kembali lagi ke titik tersebut.

Pada contoh di atas, benda mulai bergerak dari titik A lalu ke titik B, titik C dan kembali lagi ke B dan A. Urutannya adalah A-B-C-B-A. Seandainya benda dilepaskan dari titik C maka urutan gerakannya adalah C-B-A-B-C.

Jadi periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran (disebut satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut ). Satuan periode adalah sekon atau detik.

Frekuensi (f)

Selain periode, terdapat juga frekuensi alias banyaknya getaran yang dilakukan oleh benda selama satu detik. Yang dimaksudkan dengan getaran di sini adalah getaran lengkap. Satuan frekuensi adalah 1/sekon atau s-1. 1/sekon atau s-1 disebut juga hertz, menghargai seorang fisikawan. Hertz adalah nama seorang fisikawan tempo doeloe. Silahkan baca biografinya untuk mengenal almahrum eyang Hertz lebih dekat.

Hubungan antara Periode dan Frekuensi

Frekuensi adalah banyaknya getaran yang terjadi selama satu detik/sekon. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah :

Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut :

Amplitudo (f)

Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan. Pada contoh ayunan sederhana sesuai dengan gambar di atas, amplitudo getaran adalah jarak AB atau BC.

Gerak Harmonis Sederhana pada Pegas

Semua pegas memiliki panjang alami sebagaimana tampak pada gambar a. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang), sebagaimana tampak pada gambar B. Jika beban ditarik ke bawah sejauh y1 dan dilepaskan (gambar c), benda akan akan bergerak ke B, ke D lalu kembali ke B dan C. Gerakannya terjadi secara berulang dan periodik. Sekarang mari kita tinjau hubungan antara gaya dan simpangan yang dialami pegas.

Kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

Persamaan ini sering dikenal sebagai hukum hooke dan dicetuskan oleh paman Robert Hooke. k adalah konstanta dan x adalah simpangan. Hukum Hooke akurat jika pegas tidak ditekan sampai kumparan pegas bersentuhan atau diregangkan sampai batas elastisitas. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan kaku atau lembut sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin lembut sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Pegas dapat bergerak jika terlebih dahulu diberikan gaya luar. Amati bahwa besarnya gaya bergantung juga pada besar x (simpangan).

Sekarang mari kita tinjau lebih jauh apa yang terjadi jika pegas diregangkan sampai jarak x = A, kemudian dilepaskan (lihat gambar di bawah).

Setelah pegas diregangkan, pegas menarik benda kembali ke posisi setimbang (x=0). Ketika melewati posisi setimbang, benda bergerak dengan laju yang tinggi karena telah diberi percepatan oleh gaya pemulih pegas. Ketika bergerak pada posisi setimbang, gaya pegas = 0, tetapi laju benda maksimum.

Karena laju benda maksimum maka benda terus bergerak ke kiri. Gaya pemulih pegas kembali memperlambat gerakan benda sehingga laju benda perlahan-lahan menurun dan benda berhenti sejenak ketika berada pada x = -A. Pada titik ini, laju benda = 0, tetapi gaya pegas bernilai maksimum, di mana arahnya menuju ke kanan (menuju posisi setimbang).

Benda tersebut bergerak kembali ke kanan menuju titik setimbang karena ditarik oleh gaya pemulih pegas tadi. Gerakan benda ke kanan dan ke kiri berulang secara periodik dan simetris antara x = A dan x = -A.

Besaran fisika pada Gerak Harmonik Sederhana pada pegas pada dasarnya sama dengan ayunan sederhana, yakni terdapat periode, frekuensi dan amplitudo. Jarak x dari posisi setimbang disebut simpangan. Simpangan maksimum alias jarak terbesar dari titik setimbang disebut amplitudo (A). Satu getaran Gerak Harmonik Sederhana pada pegas adalah gerak bolak balik lengkap dari titik awal dan kembali ke titik yang sama. Misalnya jika benda diregangkan ke kanan, maka benda bergerak mulai dari titik x = 0, menuju titik x = A, kembali lagi ke titik x = 0, lalu bergerak menuju titik x = -A dan kembali ke titik x = 0 (bingung yach ?). Dipahami perlahan-lahan ya…

Bagaimana osilasi/getaran pada pegas yang digantungkan secara vertikal ?

Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda (gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal). Mari kita tinjau lebih jauh getaran pada pegas yang digantungkan secara vertikal…

Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang.

Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Mari kita analisis secara matematis…

Gurumuda tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak.

Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang (perhatikan gambar c di bawah).

Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. (sambil lihat gambar di bawah ya).

Pada titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks), sehingga benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Dalam kenyataannya, pada suatu saat tertentu pegas tersebut berhenti bergerak karena adanya gaya gesekan udara.

Semua benda yang bergetar di mana gaya pemulih F berbanding lurus dengan negatif simpangan (F = -kx), maka benda tersebut dikatakan melakukan gerak harmonik sederhana (GHS) alias Osilator Harmonik Sederhana (OHS).

Contoh soal 1 :

Sebuah benda digantungkan pada sebuah tali yang digantung vertikal. Benda tersebut ditarik ke samping dan dilepaskan sehingga benda bergerak bolak balik di antara dua titik terpisah sejauh 20 cm. Setelah 20 detik dilepaskan, benda melakukan getaran sebanyak 40 kali. Hitunglah frekuensi, periode dan amplitudo getaran benda tersebut.

Panduan jawaban :

a) Frekuensi adalah banyaknya getaran yang dilakukan benda selama satu detik. Benda melakukan getaran sebanyak 40 kali selama 20 detik. Dengan demikian, selama 1 detik benda tersebut melakukan getaran sebanyak 2 kali (40 / 20).

b) Periode adalah waktu yang dibutuhkan untuk melakukan satu getaran (T).

T = 1/f = ½ = 0,5 sekon

Jadi benda melakukan satu getaran selama 0,5 detik.

c) Amplitudo adalah simpangan maksimum diukur dari titik keseimbangan. Karena benda bergerak bolak balik alias melakukan getaran di antara dua titik terpisah sejauh 20 cm, maka amplitudo getaran benda adalah setengah dari lintasan yang dilalui benda tersebut. Dengan demikian, amplitudo = ½ (20 cm) = 10 cm

Contoh soal 2 :

Sebuah benda digantungkan pada sebuah pegas dan berada pada titik kesetimbangan. Benda tersebut ditarik ke bawah sejauh 5 cm dan dilepaskan. Jika benda melalui titik terendah sebanyak 10 kali selama 5 detik, tentukanlah frekuensi, periode dan amplitudo getaran benda tersebut.

Panduan jawaban :

a) Frekuensi

Frekuensi adalah banyaknya getaran yang dilakukan benda selama satu detik. Pada soal dikatakan bahwa benda tersebut melewati titik terendah sebanyak 10 kali selama 5 detik. Agar benda bisa melewati titik terendah maka benda tersebut pasti melakukan getaran (gerakan bolak balik dari titik terendah menuju titik tertinggi dan kembali lagi ke titik terendah). Karena benda melewati titik terendah sebanyak 10 kali selama 5 detik maka dapat dikatakan bahwa benda melakukan getaran sebanyak 10 kali selama 5 detik. Dengan demikian, selama 1 detik benda tersebut melakukan getaran sebanyak 2 kali (10 / 5).

b) Periode

Periode adalah waktu yang dibutuhkan untuk melakukan satu getaran (T).

T = 1/f = ½ = 0,5 sekon

Jadi benda melakukan satu getaran selama 0,5 detik.

c) Amplitudo adalah simpangan maksimum diukur dari titik keseimbangan. Pada soal di atas, amplitudo getaran benda adalah 5 cm

Contoh soal 3 :

Sebuah sedan bermassa 1200 kg ditumpangi 3 orang yang memiliki massa total 200 kg. Pegas mobil tersebut tertekan sejauh 5 cm. Anggap saja percepatan gravitasi = 10 m/s2

Hitunglah :

a) konstanta pegas mobil tersebut

b) berapa jauh pegas sedan tersebut tertekan jika sedan dinaiki 4 orang dan bagasinya dipenuhi dengan muatan sehingga total massa adalah 300 kg ?

Panduan jawaban :

Pegas sedan mulai tertekan ketika dimuati beban bermassa 200 kg. Dengan demikian massa sedan tidak disertakan dalam perhitungan, karena ketika sedan tidak dimuati beban, pegas sedan berada pada posisi setimbang.
Diposkan oleh mariska di 20:33 0 komentar
Energi Potensial Gravitasi
Contoh yang paling umum dari energi potensial adalah energi potensial gravitasi. Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Demikian juga ketika anda berada pada ketinggian tertentu dari permukaan tanah (misalnya di atap rumah ;) atau di dalam pesawat). Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Setiap benda yang memiliki energi potensial gravitasi dapat melakukan kerja apabila benda tersebut bergerak menuju permukaan bumi (misalnya buah mangga jatuh dari pohon). Untuk memudahkan pemahamanmu, lakukan percobaan sederhana berikut ini. Pancangkan sebuah paku di tanah. Angkatlah sebuah batu yang ukurannya agak besar dan jatuhkan batu tegak lurus pada paku tersebut. Amati bahwa paku tersebut terpancang semakin dalam akibat usaha alias kerja yang dilakukan oleh batu yang anda jatuhkan.

Sekarang mari kita tentukan besar energi potensial gravitasi sebuah benda di dekat permukaan bumi. Misalnya kita mengangkat sebuah batu bermassa m. gaya angkat yang kita berikan pada batu paling tidak sama dengan gaya berat yang bekerja pada batu tersebut, yakni mg (massa kali percepatan gravitasi). Untuk mengangkat batu dari permukaan tanah hingga mencapai ketinggian h, maka kita harus melakukan usaha yang besarnya sama dengan hasil kali gaya berat batu (W = mg) dengan ketinggian h. Ingat ya, arah gaya angkat kita sejajar dengan arah perpindahan batu, yakni ke atas… FA = gaya angkat

W = FA . s = (m)(-g) (s) = - mg(h2-h1) —– persamaan 1

Tanda negatif menunjukkan bahwa arah percepatan gravitasi menuju ke bawah…

Dengan demikian, energi potensial gravitasi sebuah benda merupakan hasil kali gaya berat benda (mg) dan ketinggiannya (h). h = h2 - h1

EP = mgh —— persamaan 2

Berdasarkan persamaan EP di atas, tampak bahwa makin tinggi (h) benda di atas permukaan tanah, makin besar EP yang dimiliki benda tersebut. Ingat ya, EP gravitasi bergantung pada jarak vertikal alias ketinggian benda di atas titik acuan tertentu. Biasanya kita tetapkan tanah sebagai titik acuan jika benda mulai bergerak dari permukaan tanah atau gerakan benda menuju permukaan tanah. Apabila kita memegang sebuah buku pada ketinggian tertentu di atas meja, kita bisa memilih meja sebagai titik acuan atau kita juga bisa menentukan permukaan lantai sebagai titik acuan. Jika kita tetapkan permukaan meja sebagai titik acuan maka h alias ketinggian buku kita ukur dari permukaan meja. Apabila kita tetapkan tanah sebagai titik acuan maka ketinggian buku (h) kita ukur dari permukaan lantai.
Diposkan oleh mariska di 20:31 0 komentar
potensial gravitasi
Benda bermassa m dipindahkan dari dasar ke suatu ketinggian h. Gaya konservatif pada benda tersebut adalah F = -mg. j dan pergeserannya h j maka dari persamaan tenaga potensial :

h2
 UAB = -  F . dr
h1


h2
 UAB = -  -mg j . dy j
h1

h2
 UAB =  mg dy
h1

 UAB = mgh2 - mgh1

Bila UA = 0 untuk h1 = 0, tenaga potensial gravitasi di B pada ketinggian h dapat ditentukan :
U = mgh
Diposkan oleh mariska di 20:30 0 komentar
Hukum Hooke
Hukum Hooke pada Pegas

Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang . Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh paman Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.

Hukum Hooke untuk benda non Pegas

Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.

Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)

Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :

Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban.

Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.

Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.

Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :

Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula (Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu bingung dengan panjang mula-mula atau luas penampang, coba amati gambar di bawah ini terlebih dahulu.

Dah paham panjang mula-mula (Lo) dan luas penampang (A) ?... Lanjut ya …

Besar E bergantung pada benda (E merupakan sifat benda). Secara matematis akan kita turunkan nanti… tuh di bawah

Pada persamaan ini tampak bahwa pertambahan panjang (delta L) sebanding dengan hasil kali panjang benda mula-mula (Lo) dan Gaya per satuan Luas (F/A).

Tegangan

Gaya per satuan Luas disebut juga sebagai tegangan. Secara matematis ditulis :

Satuan tegangan adalah N/m2 (Newton per meter kuadrat)

Regangan

Regangan merupakan perbandingan antara perubahan panjang dengan panjang awal. Secara matematis ditulis :

Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi).

Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jika hubungan antara tegangan dan regangan dirumuskan secara matematis, maka akan diperoleh persamaan berikut :

Ini adalah persamaan matematis dari Modulus Elastis (E) alias modulus Young (Y). Jadi modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.

Di bawah ini adalah daftar modulus elastis dari berbagai jenis benda padat
Diposkan oleh mariska di 20:30 0 komentar
Gerak Parabola
Pada pokok bahasan Gerak Lurus, baik GLB, GLBB dan GJB, kita telah membahas gerak benda dalam satu dimensi, ditinjau dari perpindahan, kecepatan dan percepatan. Kali ini kita mempelajari gerak dua dimensi di dekat permukaan bumi yang sering kita jumpai dalam kehidupan sehari-hari.

Pernakah anda menonton pertandingan sepak bola ? mudah-mudahan pernah walaupun hanya melalui Televisi. Gerakan bola yang ditendang oleh para pemain sepak bola kadang berbentuk melengkung. Mengapa bola bergerak dengan cara demikian ?

Selain gerakan bola sepak, banyak sekali contoh gerakan peluru/parabola yang kita jumpai dalam kehidupan sehari-hari. Diantaranya adalah gerak bola volly, gerakan bola basket, bola tenis, bom yang dijatuhkan, peluru yang dtembakkan, gerakan lompat jauh yang dilakukan atlet dan sebagainya. Anda dapat menambahkan sendiri. Apabila diamati secara saksama, benda-benda yang melakukan gerak peluru selalu memiliki lintasan berupa lengkungan dan seolah-olah dipanggil kembali ke permukaan tanah (bumi) setelah mencapai titik tertinggi. Mengapa demikian ?

Benda-benda yang melakukan gerakan peluru dipengaruhi oleh beberapa faktor. Pertama, benda tersebut bergerak karena ada gaya yang diberikan. Mengenai Gaya, selengkapnya kita pelajari pada pokok bahasan Dinamika (Dinamika adalah ilmu fisika yang menjelaskan gaya sebagai penyebab gerakan benda dan membahas mengapa benda bergerak demikian). Pada kesempatan ini, kita belum menjelaskan bagaimana proses benda-benda tersebut dilemparkan, ditendang dan sebagainya. Kita hanya memandang gerakan benda tersebut setelah dilemparkan dan bergerak bebas di udara hanya dengan pengaruh gravitasi. Kedua, seperti pada Gerak Jatuh Bebas, benda-benda yang melakukan gerak peluru dipengaruhi oleh gravitasi, yang berarah ke bawah (pusat bumi) dengan besar g = 9,8 m/s2. Ketiga, hambatan atau gesekan udara. Setelah benda tersebut ditendang, dilempar, ditembakkan atau dengan kata lain benda tersebut diberikan kecepatan awal hingga bergerak, maka selanjutnya gerakannya bergantung pada gravitasi dan gesekan alias hambatan udara. Karena kita menggunakan model ideal, maka dalam menganalisis gerak peluru, gesekan udara diabaikan.

Pengertian Gerak Peluru

Gerak peluru merupakan suatu jenis gerakan benda yang pada awalnya diberi kecepatan awal lalu menempuh lintasan yang arahnya sepenuhnya dipengaruhi oleh gravitasi.

Karena gerak peluru termasuk dalam pokok bahasan kinematika (ilmu fisika yang membahas tentang gerak benda tanpa mempersoalkan penyebabnya), maka pada pembahasan ini, Gaya sebagai penyebab gerakan benda diabaikan, demikian juga gaya gesekan udara yang menghambat gerak benda. Kita hanya meninjau gerakan benda tersebut setelah diberikan kecepatan awal dan bergerak dalam lintasan melengkung di mana hanya terdapat pengaruh gravitasi.

Mengapa dikatakan gerak peluru ? kata peluru yang dimaksudkan di sini hanya istilah, bukan peluru pistol, senapan atau senjata lainnya. Dinamakan gerak peluru karena mungkin jenis gerakan ini mirip gerakan peluru yang ditembakkan.

Jenis-jenis Gerak Parabola

Dalam kehidupan sehari-hari terdapat beberapa jenis gerak parabola.

Pertama, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah. Dalam kehidupan sehari-hari terdapat banyak gerakan benda yang berbentuk demikian. Beberapa di antaranya adalah gerakan bola yang ditendang oleh pemain sepak bola, gerakan bola basket yang dilemparkan ke ke dalam keranjang, gerakan bola tenis, gerakan bola volly, gerakan lompat jauh dan gerakan peluru atau rudal yang ditembakan dari permukaan bumi.

Kedua, gerakan benda berbentuk parabola ketika diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal, sebagaimana tampak pada gambar di bawah. Beberapa contoh gerakan jenis ini yang kita temui dalam kehidupan sehari-hari, meliputi gerakan bom yang dijatuhkan dari pesawat atau benda yang dilemparkan ke bawah dari ketinggian tertentu.

Ketiga, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dari ketinggian tertentu dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah.

Menganalisis Gerak Parabola

Bagaimana kita menganalisis gerak peluru ? Eyang Galileo telah menunjukan jalan yang baik dan benar. Beliau menjelaskan bahwa gerak tersebut dapat dipahami dengan menganalisa komponen-komponen horisontal dan vertikal secara terpisah. Gerak peluru adalah gerak dua dimensi, di mana melibatkan sumbu horisontal dan vertikal. Jadi gerak parabola merupakan superposisi atau gabungan dari gerak horisontal dan vertikal. Kita sebut bidang gerak peluru sebagai bidang koordinat xy, dengan sumbu x horisontal dan sumbu y vertikal. Percepatan gravitasi hanya bekerja pada arah vertikal, gravitasi tidak mempengaruhi gerak benda pada arah horisontal.

Percepatan pada komponen x adalah nol (ingat bahwa gerak peluru hanya dipengaruhi oleh gaya gravitasi. Pada arah horisontal atau komponen x, gravitasi tidak bekerja). Percepatan pada komponen y atau arah vertikal bernilai tetap (g = gravitasi) dan bernilai negatif /-g (percepatan gravitasi pada gerak vertikal bernilai negatif, karena arah gravitasi selalu ke bawah alias ke pusat bumi).

Gerak horisontal (sumbu x) kita analisis dengan Gerak Lurus Beraturan, sedangkan Gerak Vertikal (sumbu y) dianalisis dengan Gerak Jatuh Bebas.

Untuk memudahkan kita dalam menganalisis gerak peluru, mari kita tulis kembali persamaan Gerak Lurus Beraturan (GLB) dan Gerak Jatuh Bebas (GJB).

Sebelum menganalisis gerak parabola secara terpisah, terlebih dahulu kita amati komponen Gerak Peluru secara keseluruhan.

Pertama, gerakan benda setelah diberikan kecepatan awal dengan sudut teta terhadap garis horisontal.

Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan v0y merupakan kecepatan awal pada sumbu y. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x. Pada titik tertinggi lintasan gerak benda, kecepatan pada arah vertikal (vy) sama dengan nol.

Kedua, gerakan benda setelah diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal.

Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan Kecepatan awal pada sumbu vertikal (voy) = 0. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x.

Menganalisis Komponen Gerak Parabola secara terpisah

Sekarang, mari kita turunkan persamaan untuk Gerak Peluru. Kita nyatakan seluruh hubungan vektor untuk posisi, kecepatan dan percepatan dengan persamaan terpisah untuk komponen horisontal dan vertikalnya. Gerak peluru merupakan superposisi atau penggabungan dari dua gerak terpisah tersebut

Komponen kecepatan awal

Terlebih dahulu kita nyatakan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y.

Catatan : gerak peluru selalu mempunyai kecepatan awal. Jika tidak ada kecepatan awal maka gerak benda tersebut bukan termasuk gerak peluru. Walaupun demikian, tidak berarti setiap gerakan yang mempunyai kecepatan awal termasuk gerak peluru

Karena terdapat sudut yang dibentuk, maka kita harus memasukan sudut dalam perhitungan kecepatan awal. Mari kita turunkan persamaan kecepatan awal untuk gerak horisontal (v0x) dan vertikal (v0y) dengan bantuan rumus Sinus, Cosinus dan Tangen. Dipahami dulu persamaan sinus, cosinus dan tangen di bawah ini.

Berdasarkan bantuan rumus sinus, cosinus dan tangen di atas, maka kecepatan awal pada bidang horisontal dan vertikal dapat kita rumuskan sebagai berikut :

Keterangan : v0 adalah kecepatan awal, v0x adalah kecepatan awal pada sumbu x, v0y adalah kecepatan awal pada sumbu y, teta adalah sudut yang dibentuk terhadap sumbu x positip.

Kecepatan dan perpindahan benda pada arah horisontal

Kita tinjau gerak pada arah horisontal atau sumbu x. Sebagaimana yang telah dikemukakan di atas, gerak pada sumbu x kita analisis dengan Gerak Lurus Beraturan (GLB). Karena percepatan gravitasi pada arah horisontal = 0, maka komponen percepatan ax = 0. Huruf x kita tulis di belakang a (dan besaran lainnya) untuk menunjukkan bahwa percepatan (atau kecepatan dan jarak) tersebut termasuk komponen gerak horisontal atau sumbu x. Pada gerak peluru terdapat kecepatan awal, sehingga kita gantikan v dengan v0.

Dengan demikian, kita akan mendapatkan persamaan Gerak Peluru untuk sumbu x :

Keterangan : vx adalah kecepatan gerak benda pada sumbu x, v0x adalah kecepatan awal pada sumbu x, x adalah posisi benda, t adalah waktu tempuh, x0 adalah posisi awal. Jika pada contoh suatu gerak peluru tidak diketahui posisi awal, maka silahkan melenyapkan x0.

Perpindahan horisontal dan vertikal

Kita tinjau gerak pada arah vertikal atau sumbu y. Untuk gerak pada sumbu y alias vertikal, kita gantikan x dengan y (atau h = tinggi), v dengan vy, v0 dengan voy dan a dengan -g (gravitasi). Dengan demikian, kita dapatkan persamaan Gerak Peluru untuk sumbu y :

Keterangan : vy adalah kecepatan gerak benda pada sumbu y alias vertikal, v0y adalah kecepatan awal pada sumbu y, g adalah gravitasi, t adalah waktu tempuh, y adalah posisi benda (bisa juga ditulis h), y0 adalah posisi awal.

Berdasarkan persamaan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y yang telah kita turunkan di atas, maka kita dapat menulis persamaan Gerak Peluru secara lengkap sebagai berikut :

Setelah menganalisis gerak peluru secara terpisah, baik pada komponen horisontal alias sumbu x dan komponen vertikal alias sumbu y, sekarang kita menggabungkan kedua komponen tersebut menjadi satu kesatuan. Hal ini membantu kita dalam menganalisis Gerak Peluru secara keseluruhan, baik ditinjau dari posisi, kecepatan dan waktu tempuh benda. Pada pokok bahasan Vektor dan Skalar telah dijelaskan teknik dasar metode analitis. Sebaiknya anda mempelajarinya terlebih dahulu apabila belum memahami dengan baik.

Persamaan untuk menghitung posisi dan kecepatan resultan dapat dirumuskan sebagai berikut.

Pertama, vx tidak pernah berubah sepanjang lintasan, karena setelah diberi kecepatan awal, gerakan benda sepenuhnya bergantung pada gravitasi. Nah, gravitasi hanya bekerja pada arah vertikal, tidak horisontal. Dengan demikian vx bernilai tetap.

Kedua, pada titik tertinggi lintasan, kecepatan gerak benda pada bidang vertikal alias vy = 0. pada titik tertinggi, benda tersebut hendak kembali ke permukaan tanah, sehingga yang bekerja hanya kecepatan horisontal alias vx, sedangkan vy bernilai nol. Walaupun kecepatan vertikal (vy) = 0, percepatan gravitasi tetap bekerja alias tidak nol, karena benda tersebut masih bergerak ke permukaan tanah akibat tarikan gravitasi. jika gravitasi nol maka benda tersebut akan tetap melayang di udara, tetapi kenyataannya tidak teradi seperti itu.

Ketiga, kecepatan pada saat sebelum menyentuh lantai biasanya tidak nol.

Pembuktian Matematis Gerak Peluru = Parabola

Sekarang Gurumuda ingin menunjukkan bahwa jalur yang ditempuh gerak peluru merupakan sebuah parabola, jika kita mengabaikan hambatan udara dan menganggap bahwa gravitasi alias g bernilai tetap. Untuk menunjukkan hal ini secara matematis, kita harus mendapatkan y sebagai fungsi x dengan menghilangkan/mengeliminasi t (waktu) di antara dua persamaan untuk gerak horisontal dan vertikal, dan kita tetapkan x0 = y0 = 0.

Kita subtitusikan nilai t pada persamaan 1 ke persamaan 2

Dari persamaan ini, tampak bahwa y merupakan fungsi dari x dan mempunyai bentuk umum

y = ax – bx2

Di mana a dan b adalah konstanta untuk gerak peluru tertentu. Persamaan ini merupakan fungsi parabola dalam matematika.

Petunjuk Penyelesaian Masalah-Soal Untuk Gerak Peluru

Pertama, baca dengan teliti dan gambar sebuah diagram untuk setiap soal yang diberikan. tapi jika otakmu mirip Eyang Einstein, gambarkan saja diagram tersebut dalam otak.

Kedua, buat daftar besaran yang diketahui dan tidak diketahui.

Ketiga, analisis gerak horisontal (sumbu x) dan vertikal (sumbu y) secara terpisah. Jika diketahui kecepatan awal, anda dapat menguraikannya menjadi komponen-konpenen x dan y.

Keempat, berpikirlah sejenak sebelum menggunakan persamaan-persamaan. Gunakan persamaan yang sesuai, bila perlu gabungkan beberapa persamaan jika dibutuhkan.

Contoh Soal 1 :

David Bechkam menendang bola dengan sudut 30o terhadap sumbu x positif dengan kecepatan 20 m/s. Anggap saja bola meninggalkan kaki Beckham pada ketinggian permukaan lapangan. Jika percepatan gravitasi = 10 m/s2, hitunglah :

a) Tinggi maksimum

b) waktu tempuh sebelum bola menyentuh tanah

c) jarak terjauh yang ditempuh bola sebelum bola tersebut mencium tanah

d) kecepatan bola pada tinggi maksimum

e) percepatan bola pada ketinggian maksimum

Panduan Jawaban :

Soal ini terkesan sulit karena banyak yang ditanyakan. Sebenarnya gampang, jika kita melihat dan mengerjakannya satu persatu-satu.

Karena diketahui kecepatan awal, maka kita dapat menghitung kecepatan awal untuk komponen horisontal dan vertikal.

a) Tinggi maksimum (y)

Jika ditanyakan ketinggian maksimum, maka yang dimaksudkan adalah posisi benda pada sumbu vertikal (y) ketika benda berada pada ketinggian maksimum alias ketinggian puncak. Karena kita menganggap bola bergerak dari permukaan tanah, maka yo = 0. Kita tulis persamaan posisi benda pada gerak vertikal

Bagaimana kita tahu kapan bola berada pada ketinggian maksimum ? untuk membantu kita, ingat bahwa pada ketinggian maksimum hanya bekerja kecepatan horisontal (vx) , sedangkan kecepatan vertikal (vy) = 0. Karena vy = 0 dan percepatan gravitasi diketahui, maka kita gunakan salah satu gerak vertikal di bawah ini, untuk mengetahui kapan bola berada pada tinggian maksimum.

Berdasarkan perhitungan di atas, bola mencapai ketinggian maksimum setelah bergerak 1 sekon. Kita masukan nilai t ini pada persamaan y

Ketinggian maksimum yang dicapai bola adalah 5 meter. Gampang khan ?

b) Waktu tempuh bola sebelum menyentuh permukaan tanah

Ketika menghitung ketinggian maksimum, kita telah mengetahui waktu yang diperlukan bola untuk mencapai ketinggian maksimum. Sekarang, yang ditanyakan adalah waktu tempuh bola sebelum menyentuh permukaan tanah. Yang dimaksudkan di sini adalah waktu tempuh total ketika benda melakukan gerak peluru.

Untuk menyelesaikan soal ini, hal pertama yang perlu kita ingat adalah ketika menyentuh permukaan tanah, ketinggian bola dari permukaan tanah (y) = 0. sekali lagi ingat juga bahwa kita menanggap bola bergerak dari permukaan tanah, sehingga posisi awal bola alias y0 = 0.

Sekarang kita tuliskan persamaan yang sesuai, yaitu

Waktu tempuh total adalah 2 sekon.

Sebenarnya kita juga bisa menggunakan cara cepat. Pada bagian a), kita sudah menghitung waku ketika benda mencapai ketinggian maksimum. Nah, karena lintasan gerak peluru berbentuk parabola, maka kita bisa mengatakan waktu tempuh benda untuk mencapai ketinggian maksimum merupakan setengah waktu tempuh total. Dengan kata lain, ketika benda berada pada ketinggian maksimum, maka benda tersebut telah melakukan setengah dari keseluruhan gerakan. Cermati gambar di bawah ini sehingga anda tidak kebingungan. Dengan demikian, kita bisa langsung mengalikan waktu tempuh bola ketika mencapai ketinggian maksimum dengan 2, untuk memperoleh waktu tempuh total.

c) Jarak terjauh yang ditempuh bola sebelum bola tersebut mencium tanah

Jika ditanya jarak tempuh total, maka yang dimaksudkan di sini adalah posisi akhir benda pada arah horisontal (atau s pada gambar di atas). Soal ini gampang, tinggal dimasukkan saja nilainya pada persamaan posisi benda untuk gerak horisontal atau sumbu x. karena kita menghitung jarak terjauh, maka waktu (t) yang digunakan adalah waktu tempuh total.

d) kecepatan bola pada tinggi maksimum

Pada titik tertinggi, tidak ada komponen vertikal dari kecepatan. Hanya ada komponen horisontal (yang bernilai tetap selama bola melayang di udara). Dengan demikian, kecepatan bola pada pada tinggi maksimum adalah :

e) percepatan bola pada ketinggian maksimum

Pada gerak peluru, percepatan yang bekerja adalah percepatan gravitasi yang bernilai tetap, baik ketika bola baru saja ditendang, bola berada di titik tertinggi dan ketika bola hendak menyentuh permukaan tanah. Percepatan gravitasi (g) berapa ? jawab sendiri ya…

Contoh soal 2 :

Seorang pengendara sepeda motor yang sedang mabuk mengendarai sepeda motor melewati tepi sebuah jurang yang landai. Tepat pada tepi jurang kecepatan motornya adalah 10 m/s. Tentukan posisi sepeda motor tersebut, jarak dari tepi jurang dan kecepatannya setelah 1 detik.

Panduan Jawaban :

Kita memilih titik asal koordinat pada tepi jurang, di mana xo = yo = 0. Kecepatan awal murni horisontal (tidak ada sudut), sehingga komponen-komponen kecepatan awal adalah :

soal gerak parabola-1

Di mana letak sepeda motor setelah 1 detik ? setelah 1 detik, posisi sepeda motor dan pengendaranya pada koordinat x dan y adalah sbb (xo dan yo bernilai nol) :

x = xo + vox t = (10 m/s)(1 s) = 10 m

y = yo + (vo sin teta) t – ½ gt2

y = – ½ gt2

y = – ½ (10 m/s2)(1 s)2

y = – 5 m

Nilai negatif menunjukkan bahwa motor tersebut berada di bawah titik awalnya.

soal gerak parabola-2

Berapa jarak motor dari titik awalnya ?

Berapa kecepatan motor pada saat t = 1 s ?

vx = vox = 10 m/s

vy = -gt = -(10 m/s2)(1 s) = -10 m/s

soal gerak parabola-3

soal gerak parabola-4

Setelah bergerak 1 sekon, sepeda motor bergerak dengan kecepatan 14,14 m/s dan berada pada 45o terhadap sumbu x positif.